Document Type

Article

Publication Title

The Lancet. Digital health

Abstract

Clinicians rely on various data modalities-such as patient history, clinical signs, imaging, and laboratory results-to improve decision making. Multimodal artificial intelligence (AI) systems are emerging as powerful tools to process these diverse data types; however, the clinical adoption of multimodal AI systems is challenging because of data heterogeneity and integration complexities. The 2024 Temerty Centre for AI Research and Education in Medicine symposium, held on June 17, 2024, in Toronto, Canada, explored the potential and challenges of implementing multimodal AI in health care. In this Review, we summarise insights from the symposium. We discuss current applications, such as those used in early diagnosis of sepsis and cardiology, and identify key barriers, including fusion techniques, model selection, generalisation, fairness, safety, security, and international considerations on the responsible deployment of multimodal AI in health care. We outline practical strategies to overcome these obstacles, emphasising technologies such as federated learning to reduce bias and promote equitable health care. By addressing these challenges, multimodal AI can transform clinical practice and improve patient outcomes worldwide.

First Page

100917

Last Page

100917

DOI

10.1016/j.landig.2025.100917

Publication Date

12-1-2025

Share

COinS